FEM-RBF: A Geometrically Flexible, Efficient Numerical Solution Technique for Partial Differential Equations with Mixed Regularity

ثبت نشده
چکیده

1 About This Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Hybrid FEM-RBF scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 One Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 Two Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 RBF Interpolant and Differentiation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 PDE Collocation in the RBF Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.1 Finite Difference Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.2 Partition of Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.1 RBF-FD as a Full Poisson Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.2 Notes on Cases when nloc = N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.3 RBF-PU as a Full Poisson Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7 Hybrid FEM-RBF for Smooth Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.1 Numerical Experiments in 1 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.2 Numerical Experiments in 2 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8 On-going Software Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 10 MATLAB Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 11 MATLAB Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

متن کامل

The Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order

Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...

متن کامل

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

Usage of the Variational Iteration Technique for Solving Fredholm Integro-Differential Equations

Integral and integro-differential equations are one of the most useful mathematical tools in both pure and applied mathematics. In this article, we present a variational iteration method for solving Fredholm integro-differential equations. This study provides an analytical approximation to determine the behavior of the solution. To show the efficiency of the present method for our proble...

متن کامل

A Meshless Method for Numerical Solution of Fractional Differential Equations

In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012